# Class XIIth Question Paper 1

**English**

**Math**>

**Angles**

**17 - 18**

**Class XIIth Question Paper 1**

**1). Find the principal value of sin^-1(1/√2)?**

π/3

π/6

π/4

π/2

**2). Find the principal value of cot^-1(1/√3)?**

3π/2

2π/3

π/3

π/6

**3). Find the principal value of cos^-1(1/√2)?**

π/4

3π/2

π/2

0

**4). Find the principal value of sec^-1(√3/2)?**

π/2

π/6

π/3

2π/3

**5). Find the principal value of tan^-1 (-1)?**

-π/4

3π/4

2π/2

π

**6). Find the principal value of cosec^-1(2)?**

2π/3

0

π/6

None of these

**7). Find the principal value of cos^-1(-1/2)?**

2π/3

-2π/3

π

π/4

**8). Find the principal value of cosec^-1(-2)?**

3π/2

π/6

π/4

-π/4

**9). Find the principal value of cot^-1(√3)?**

π/6

2π/3

-π/2

π

**10). tan^-1 (√3) – sec^-1 (–2) is equal to**

2π/3

π/3

–π/3

π

**11). sin^–1 (–x)**

( sin x)^–1

1/sin^–1 x

cos^–1 x

–sin^–1 x

**12). π–cot^–1 x , x £ R is equal to**

cot^–1 ( –x)

sin^–1 (–x)

cot^–1 (x)

sec^–1 (–x)

**13). sec^–1 (–x) is equal to**

π/2 – sec^–1 x

π–sec^–1 x

π–cos^–1 x

π/2–cos^–1 x

**14). tan^–1 x + cot^–1 x is equal to if x £ R**

π/4

2π/3

π/3

π/2

**15). sin^–1 x + cos^–1 x is equal to , if x £[–1, 1 ]**

π/3

π/4

π/2

None of these

**16). cos^–1 (1/x) is equal to, if x ≥ 1 or x ≤ –1**

cosec^–1 x

2/cosec^–1 x

–1/sin^–1 x

cosec x

**17). tan^–1 (1/x) is equal to , if x > 0**

1/tan^–1 x

cosec^–1 x

cot^–1 x

–cot^–1 x

**18). What is the range of tan^–1**

[–π/2 , π/2]

(–π/2 , π/2)

[–1 , –1]

R

**19). The relation R in the set {1,2,3} given by R = {(1,2), (2,1 )} is...(a) Symmetric Relation(b) Reflexive Relation(c) Transitive Relation(d) Equivalence Relation**

( a )

( b )

( c )

( d )

**20). Let R be the relation in the set N given by R={(a,b):a=b–2,b>6}. Choose the correct answer.(A) (2, 4)€R(B) (3, 8)€R(C) (6, 8)€R(D) (8, 7)€R**

( A )

( B )

( C )

( D )